Analisis prediktif maintenance berbasis IoT untuk mengurangi downtime pada mesin produksi
Main Article Content
Abstract
Downtime mesin merupakan salah satu penyebab utama penurunan produktivitas di industri manufaktur. Sistem pemeliharaan konvensional seperti preventive maintenance sering kali belum mampu mendeteksi potensi kerusakan secara dini. Teknologi Internet of Things (IoT) menawarkan pendekatan predictive maintenance yang mampu memantau kondisi mesin secara real-time dan memprediksi kegagalan sebelum terjadi. Penelitian ini bertujuan untuk menganalisis efektivitas sistem predictive maintenance berbasis IoT dalam mengurangi downtime mesin produksi. Penelitian dilakukan pada lini produksi PT SDE di Sulawesi Selatan dengan menggunakan sensor getaran, suhu, dan arus listrik yang diintegrasikan ke dalam platform IoT. Desain penelitian menggunakan metode eksperimen semu (quasi-experimental) dengan perbandingan antara kondisi before dan after penerapan sistem selama 3 bulan. Data dianalisis menggunakan paired t-test untuk melihat perbedaan signifikan waktu downtime. Hasil menunjukkan bahwa rata-rata downtime mesin menurun dari 18,4 jam/bulan menjadi 9,7 jam/bulan (penurunan 47,3%). Nilai t = 6,58 dengan p < 0,001 menunjukkan perbedaan signifikan. Sistem IoT juga memungkinkan perawatan dilakukan secara prediktif berdasarkan data kondisi aktual mesin. Dengan demikian, implementasi predictive maintenance berbasis IoT terbukti efektif dalam meningkatkan keandalan mesin dan efisiensi operasional industri manufaktur.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahuja, I.P.S. and Khamba, J.S. (2008) ‘Total productive maintenance: literature review and directions’, International Journal of Quality & Reliability Management, 25(7), pp. 709–756.
Bousdekis, A., Magoutas, B. and Apostolou, D. (2019) ‘Predictive maintenance in the era of industry 4.0’, Computers in Industry, 104, pp. 48–60.
Gopalakrishnan, P. and Banerji, A.K. (2013) Maintenance and spare parts management. New Delhi: PHI Learning.
IBM (2020) Predictive maintenance using IoT analytics. New York: IBM Press.
Jardine, A.K.S., Lin, D. and Banjevic, D. (2006) ‘A review on machinery diagnostics and prognostics implementing condition-based maintenance’, Mechanical Systems and Signal Processing, 20(7), pp. 1483–1510.
Lee, J., Bagheri, B. and Kao, H.A. (2015) ‘A cyber-physical systems architecture for industry 4.0-based manufacturing systems’, Manufacturing Letters, 3, pp. 18–23.
Mobley, R.K. (2019) Maintenance fundamentals. 4th edn. New York: Elsevier.
Muchiri, P. and Pintelon, L. (2008) ‘Performance measurement using overall equipment effectiveness (OEE)’, International Journal of Production Research, 46(13), pp. 3517–3535.
Ng, W.K., Low, C.K. and Tan, J. (2021) ‘Challenges and opportunities in IoT predictive maintenance adoption’, Procedia Manufacturing, 55, pp. 442–449.
Olanrewaju, O.I. and Abdul-Aziz, F. (2015) ‘Building maintenance processes and strategies’, Journal of Building Performance, 6(1), pp. 1–16.
Patil, M. et al. (2019) ‘IoT-based predictive maintenance framework for manufacturing’, Journal of Industrial Information Integration, 16, pp. 100–109.
PwC (2021) Digital factory survey report. London: PricewaterhouseCoopers.
Rao, B. and Kumar, S. (2020) ‘Condition monitoring and predictive maintenance of rotating machinery’, IEEE Access, 8, pp. 99329–99345.
Sasi, A. and Pillai, A. (2020) ‘IoT-enabled predictive maintenance systems: A review’, Journal of Manufacturing Systems, 56, pp. 15–26.
Smith, R. and Hawkins, B. (2004) Lean maintenance. Oxford: Elsevier.
Tsang, A.H.C. (2002) ‘Strategic dimensions of maintenance management’, Journal of Quality in Maintenance Engineering, 8(1), pp. 7–39.
Waeyenbergh, G. and Pintelon, L. (2004) ‘A framework for maintenance concept development’, International Journal of Production Economics, 77(3), pp. 299–313.
Wang, K., Liu, C. and Zhang, X. (2017) ‘Big data-driven smart factory and its role in predictive maintenance’, Computers & Industrial Engineering, 110, pp. 395–408.
Zhang, Z., He, Y. and Yuan, Z. (2019) ‘Smart maintenance using IoT and machine learning technologies’, Sensors, 19(19), pp. 4221–4238.
Zhou, J., Xiang, Y. and Li, W. (2020) ‘A data-driven approach for predictive maintenance of industrial machinery’, IEEE Transactions on Industrial Informatics, 16(5), pp. 3489–3498.
McKinsey & Company (2022) Global maintenance excellence report. New York: McKinsey
