HUBUNGAN KEMAMPUAN AWAL TRANSFORMASI GEOMETRI DAN KECERDASAN VISUAL SPASIAL DENGAN KEMAMPUAN MENGGAMBAR KONSTRUKSI GEOMETRIS PESERTA DIDIK SMK DI DKI JAKARTA

THE RELATIONSHIP BETWEEN THE INITIAL ABILITY OF GEOMETRIC TRANSFORMATION AND SPATIAL VISUAL INTELLIGENCE WITH THE ABILITY TO DRAW GEOMETRIC CONSTRUCTIONS OF VOCATIONAL SCHOOL STUDENTS IN DKI JAKARTA

Ary Rustianti^{1*}, Soeprijanto^{2*}, Yuliatri^{3*}

1) 2) 3) Pendidikan Teknik Elektronika S2 PTK Universitas Negeri Jakarta
Email Korespondensi: aryrustianti1976@gmail.

Abstrak. Menggambar konstruksi geometris adalah salah satu kompetensi dasar dari mata pelajaran kerja bengkel dan gambar teknik yang merupakan mata pelajaran wajib di SMK, namun hasil belajarnya cenderung masih di bawah kriteria ketuntasan minimal. Penelitian ini bertujuan untuk mengetahui hubungan antara: 1) kemampuan awal transformasi geometri (X₁) dengan kemampuan menggambar konstruksi geometris (Y), 2) kecerdasan visual spasial (X₂) dengan kemampuan menggambar konstruksi geometris (Y), dan 3) kemampuan awal transformasi geometri (X₁) dan kecerdasan visual spasial (X₂) secara bersama-sama dengan kemampuan menggambar konstruksi geometris (Y). Metode yang digunakan adalah metode survey dengan teknik korelasional. Hasil penelitian ini menunjukkan bahwa: 1) terdapat hubungan positif antara variabel X₁ dengan variabel Y, 2) terdapat hubungan positif antara variabel X₂ dengan variabel Y, dan 3) terdapat hubungan positif antara variabel X₁ dan variabel X₂ secara bersama-sama dengan variabel Y.

Kata Kunci: Kemampuan Awal, Transformasi Geometri, Kecerdasan Visual Spasial, Konstruksi Geometris

Abstract. Drawing geometric constructions is one of the basic competencies of workshop work and technical drawing subjects which are compulsory subjects in SMK, but the learning outcomes tend to be below the minimum completeness criteria. This study aims to determine the relationship between: 1) the initial ability of geometric transformation (X_1) with the ability to draw geometric constructions (Y), 2) spatial visual intelligence (X_2) with the ability to draw geometric constructions (Y), and 3) the initial ability of geometric transformation (X_1) and spatial visual intelligence (X_2) together with the ability to draw geometric constructions (Y).

The method used is a survey method with correlational techniques. The results of this study indicate that: 1) there is a positive relationship between variable X_1 and variable Y, 2) there is a positive relationship between variable X_2 and variable Y, and 3) there is a positive relationship between variable X_1 and variable X_2 together with variable Y.

Keyword: initial ability, geometric transformation, spatial visual intelligence, geometric construction.

Pendahuluan

Salah satu mata pelajaran pada SMK kelas X program keahlian Elektronika Industri dan Audio Video adalah kerja bengkel dan gambar teknik yaitu mata pelajaran yang mencakup beberapa Kompetensi Dasar (KD) salah satunya yaitu menggambar

*Penulis Korespondensi

konstruksi geometris yang terdiri dari isometrik, dimetrik, perspektif, dan proyeksi miring.

Berdasarkan observasi lapangan yang dilakukan peneliti terhadap tiga SMK di Jakarta, masih banyak peserta didik mendapatkan nilai di bawah Kriteria Ketuntasan Minimal (KKM). Dari 108 peserta didik hanya 44 peserta didik yang nilainya di atas KKM, selebihnya 64 peserta didik mendapatkan nilai di bawah KKM yang jika dipersentasikan sekitar 40,74 % peserta didik yang mencapai KKM dan 59,26 % peserta didik di bawah KKM.

Materi yang menyangkut titik singgung, kemiringan bidang ruang 3D, kedudukan, perputaran sudut pada sumbu (x, y, dan z), ukuran besar sudut derajat serta konsepkonsep yang bersifat abstrak dianggap sulit oleh peserta didik karena merupakan materi yang relatif baru bagi peserta didik SMK dan belum pernah diperolehnya pada jenjang pendidikan sebelumnya yaitu di Sekolah Menengah Pertama (SMP). Sehingga menjadikan hasil belajar yang tidak maksimal pada peserta didik. Melihat berbagai faktor adanya kemungkinan lain penyebab rendahnya hasil menggambar konstruksi siswa disebabkan oleh faktor kemampuan awal transformasi geometri yang kurang baik. Kemampuan awal adalah pengetahuan dan keterampilan yang telah dimiliki siswa sehingga mereka dapat mengikuti pelajaran dengan baik (Razak, 2018).

Penelitian yang dilakukan oleh (Rahmat, Syaad, & Soenar, 2016) menyatakan bahwa faktor kemampuan awal mempunyai pengaruh terhadap hasil belajar

keterampilan. Penelitian lain yang dilakukan oleh (Purwati, 2016) menyatakan terdapat hubungan antara kemampuan awal dan pemahaman konsep usaha dan energi.

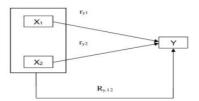
Menggambar adalah menuangkan pemikiran dan ide yang dimiliki perancang. Gambar yang dihasikan adalah gambar produktif yang kemudian dapat diwujudkan dalam bentuk asli sehingga perlu proses berpikir dari kemampuan atau kecerdasan khusus dalam menggambar. Kemampuan atau kecerdasan khusus yang diperlukan untuk menggambar dalam konsep kecerdasan Gardner disebut kecerdasan visual (Iqbal Kamil & Suparji, 2017). Visual spasial adalah kemampuan membayangkan suatu objek yang dikonstruksi dari suatu gambar dalam satu pola (Handayani, 2011). Pada kecerdasan visual spasial terdapat faktor terbentuknya kecerdasan ini antara lain: faktor biologis, sejarah hidup pribadi, dan latar belakang kultural dan harmonis (Mulfi & Rizal, 2018). Untuk indikator kecerdasan visual spasial digunakan indikator berdasarkan Review of spatial ability literature, antara lain: spatial relation, spatial orientation, visualization, speeded rotation, closure speed, flexibility of closure, perceptual speed (Harle, 2014).

Penelitian yang dilakukan oleh (Mustofa, Pikoli, & Suleman, 2013) menyimpulkan bahwa terdapat hubungan antara kecerdasan spasial dengan kemampuan visual menggambarkan bentuk molekul siswa. Penelitian lain yang dilakukan oleh (Iqbal Kamil & Suparji, 2017) menyatakan bahwa terdapat pengaruh yang signifikan antara kemampuan spasial dengan kemampuan menggambar konstruksi beton bertulang, kemampuan spasial berpengaruh secara signifikan terhadap kemampuan

^{*}Penulis Korespondensi

menggambar konstruksi beton bertulang siswa kelas XI TGB. Penelitian yang dilakukan oleh (Mursid, 2016) menyatakan bahwa mahasiswa memiliki yang kecerdasan visual spasial tinggi, memperoleh kompetensi menggambar proyeksi orthogonal yang lebih tinggi. Penelitian yang dilakukan oleh (Mulfi & Rizal, 2018) menyimpulkan bahwa terdapat kontribusi kecerdasan visual spasial pada hasil belajar gambar interior dan eksterior bangunan gedung peserta didik jurusan TGB SMK Bukittinggi.

Berdasarkan kajian di atas besar hubungan antara kemampuan awal transformasi geometri dan kecerdasan visual spasial dengan kemampuan menggambar konstruksi geometris peserta didik SMK perlu diteliti. Tujuan dari penelitian ini adalah untuk mengetahui hubungan antara: 1) kemampuan awal transformasi geometri kemampuan menggambar konstruksi geometris, 2) kecerdasan visual spasial dengan kemampuan menggambar konstruksi geometris, dan 3) kemampuan awal transformasi geometri dan kecerdasan visual spasial secara bersama-sama dengan kemampuan menggambar konstruksi geometris.


Metode Penelitian

Tempat penelitian ini dilaksanakan di tiga SMKN dengan akreditasi "A" di DKI Jakarta, SMKN 4, SMKN 26, dan SMKN 39 dengan keahlian teknik elektronika kelas X pada tahun ajaran 2019-2020. Waktu penelitian dilaksanakan pada bulan Juni 2020.

Jenis penelitian yang digunakan adalah deskriptif kuantitatif dengan pendekatan korelasional. Penelitian korelasional adalah penelitian yang dilakukan oleh peneliti untuk menentukan ada tidaknya hubungan

variabel, apabila ada, berapa eratnya hubungan serta berarti atau tidaknya hubungan itu (Arikunto, 2002).

Variabel dalam penelitian ini dibagi menjadi dua kelompok yaitu variabel bebas yaitu kemampuan awal transformasi geometri (X_1) dan kecerdasan visual spasial (X_2) serta variabel terikat yaitu kemampuan menggambar konstruksi geometris (Y). Adapun konstelasinya dapat dijelaskan pada gambar 1.1. berikut:

Gambar 1.1 Hubungan antar variabel

Keterangan gambar:

 $X_1 =$ Kemampuan awal transformasi geometri

 X_2 = kecerdasan visual spasial

Y = kemampuan menggambar konstruksi geometris.

Populasi target dalam penelitian ini adalah seluruh peserta didik SMK Negeri Jakarta program keahlian teknik elektronika. Sedangkan populasi terjangkaunya adalah peserta didik kelas X SMK program keahlian teknik elektronika. Adapun populasinya berasal dari SMKN 4 Jakarta berjumlah 26 orang, SMKN 26 Jakarta berjumlah 26 orang, dan SMKN 39 Jakarta berjumlah 26 orang, sehingga total berjumlah 78 orang.

Langkah dalam penentuan sampel pada penelitian ini menggunakan *purposive sampling*, yaitu teknik penentuan sampel dengan pertimbangan tertentu (Sugiyono, 2015).

^{*}Penulis Korespondensi

Penentuan jumlah sampel pada penelitian ini menggunakan rumus Slovin dengan taraf signifikan 5% berikut:

$$n = \frac{N}{1 + N.e^2}$$

Keterangan:

n = jumlah sampel

N = jumlah populasi

e = margin kesalahan (tingkat kesalahan)

= 0,05 (5%) (Siregar, 2013)

Dari jumlah populasinya sebesar 78 peserta didik, dengan mengambil margin kesalahan sebesar 0,05 maka hasil perhitungan rumus Slovin diperoleh jumlah sampel sebesar 65 peserta didik.

Instrumen yang digunakan dalam penelitian ini adalah sebagai berikut:

- Lembar tes unjuk kerja untuk mengetahui
 X₁ sebanyak 10 soal dalam bentuk uraian.
- 2. Lembar tes pilihan ganda untuk mengetahui X₂ sebanyak 24 soal.
- 3. Lembar tes unjuk kerja untuk mengetahui Y sebanyak 5 soal dalam bentuk uraian.

Teknik analisis data yang digunakan dalam penelitian ini adalah:

- 1. Analisis Awal
- a. Validitas Instrumen

untuk mencari validitas instrument soal tes digunakan rumus korelasi *Product Moment*

$$r_{XY} = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{\sqrt{\{N\Sigma X^2 - (\Sigma X)^2\}\{N\Sigma Y^2 - (\Sigma Y)^2\}}}$$

Keterangan:

 r_{xy} = koefisien korelasi data X terhadap data Y,

X = skor data X,Y = skor data Y,

N = jumlah sampel uji coba.

(Arikunto, 2009).

b. Reliabilitas Instrumen

untuk mencari reliabilitas instrumen soal tes digunakan rumus *Alpha Cronbach* sebagai berikut:

$$\mathbf{r}_{11} = \left[\frac{k}{k-1}\right] \left[1 - \frac{\Sigma \sigma_b^2}{\sigma_t^2}\right]$$

$$\sigma_t^2 = \frac{\Sigma X^2 - \frac{(\Sigma X)^2}{N}}{N}$$

Keterangan:

 r_{11} = reliabilitas instrumen,

k = banyaknya soal,

 $\Sigma \sigma_b^2$ = jumlah varian soal,

 σ_t^2 = varian total, dan

X = skor total (Arikunto, 2009)

2. Analisis akhir

Analisis akhir menggunakan Analisis korelasi ganda, Uji-T, dan Analisis regresi berganda $Y=a+b_1.X_1+b_2.X_2$. Nilai thitung kemudian dibandingkan dengan t_{tabe}l dengan ketentuan apabila t_{hitung} > t_{tabe}l maka korelasi tersebut signifikan.

Hasil dan Pembahasan

A. Deskripsi Data

Seluruh data dari tiap variabel yang telah terkumpul kemudian diringkas dan dijabarkan pada tabel data analisis deskriptif sebagai berikut:

Tabel 1.1 Tabel Analisis Deskriptif

	X_1	X_2	Y
N Valid	10	24	5
Rentangan	12	12	13
Banyak Kelas Interval (K)	7	7	7
Panjang Kelas Interval (P)	1,71	2	2
Mean	35,58	13,49	15,86
Median	35,85	13,63	16,31
Modus	36,61	13,33	17,94

*Penulis Korespondensi

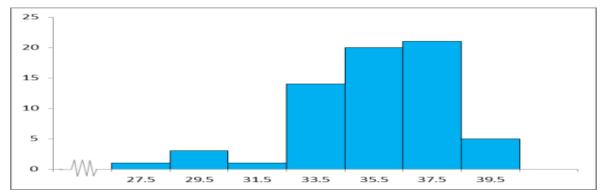
Tabel 1.1 di atas menjelaskan mean atau rata-rata nilai tes X_1 adalah 35,58; Mean tes X_2 adalah 13,49; Mean Y adalah 15,86. Median atau nilai tengah jika semua data diurutkan dan dibagi dua sama besar. Angka median X_1 adalah 35,85 menunjukkan bahwa 50% sampel mendapatkan nilai tes X_1 di atas 35,58, dan 50% sisanya mendapatkan nilai di bawah 35,58. Angka median X_2 adalah 13,63 menunjukkan bahwa 50% sampel mendapatkan nilai tes X_2 di atas 13,63, dan 50% sisanya mendapatkan nilai di bawah 13,63. Angka

median Y adalah 16,31 menunjukkan bahwa 50% sampel mendapatkan nilai tes Y di atas 16,31, dan 50% sisanya mendapatkan nilai di bawah16,31.

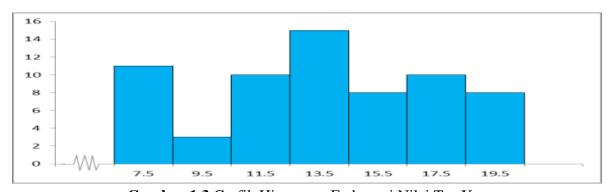
Angka modus nilai tes X_1 yang paling banyak didapat peserta didik adalah 36,61 sebanyak 21 orang, angka modus X_2 yang paling banyak didapat peserta didik adalah 13,33 sebanyak 15 orang, angka modus Y yang paling banyak didapat peserta didik adalah 17,94 sebanyak 22 orang.

Tabel 1.2 Frekuensi X₁

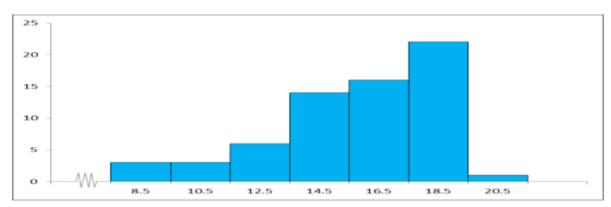
No	Kelas Interval	Titik Tengah	Frekuensi	Frekensi Kumulatif	Frekuensi Relatif (%)
1	27 - 28	27,5	1	1	1,54%
2	29 - 30	29,5	3	4	4,62%
3	31 - 32	31,5	1	5	1,54%
4	33 - 34	33,5	14	19	21,54%
5	35 - 36	35,5	20	39	30,77%
6	37 - 38	37,5	21	60	32,31%
7	39 - 40	39,5	5	65	7,69%
	Jumlah		65		100%


Tabel 1.3 Frekuensi X₂

No	Kelas Interval	Titik Tengah	Frekuensi	Frekensi Kumulatif	Frekuensi Relatif (%)
1	7 – 8	7,5	11	11	16,92%
2	9 - 10	9,5	3	14	4,62%
3	11 - 12	11,5	10	24	15,38%
4	13 - 14	13,5	15	39	23,08%
5	15 - 16	15,5	8	47	12,31%
6	17 - 18	17,5	10	57	15,38%
7	19 - 20	19,5	8	65	12,31%
	Jumlah		65		100%


Tabel 1.4 Frekuensi Y

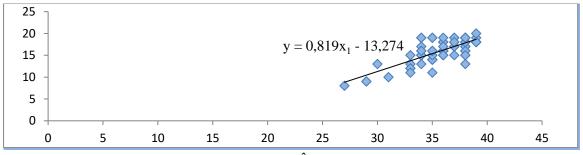
No	Kelas Interval	Titik Tengah	Frekuensi	Frekensi Kumulatif	Frekuensi Relatif (%)
1	8 – 9	8,5	3	3	4,62%
2	10 - 11	10,5	3	6	4,62%
3	12 - 13	12,5	6	12	9,23%
4	14 - 15	14,5	14	26	21,54%
5	16 - 17	16,5	16	42	24,62%
6	18 - 19	18,5	22	64	33,85%
7	20 - 21	20,5	1	65	1,54%
	Jumlah		65		100%


*Penulis Korespondensi

Gambar 1.2 Grafik Histogram Frekuensi Nilai Tes X₁

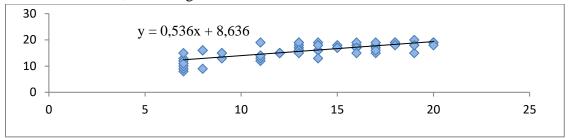
Gambar 1.3 Grafik Histogram Frekuensi Nilai Tes X2

Gambar 1.4 Grafik Histogram Frekuensi Nilai Tes Y


Pada grafik beberapa variabel di atas terlihat bahwa batang histogram membentuk kurva normal, hal ini membuktikan bahwa distribusi tersebut dikatakan normal.

B. Pengujian Persyaratan Analisis Data

1. Persamaan regresi


a. Persamaan Regresi X_1 dengan Y. Persamaan $\hat{Y} = a + bX_1$, menghasilkan koefisien arah regresi sebesar 0,819 dan konstanta sebesar -13,274. Dengan demikian bentuk hubungan antar variabel X_1 dan Y memiliki persamaan regresi $\hat{Y} = -13,274 + 0,819 \ X_1$.

*Penulis Korespondensi

Gambar 1.5 Garis regresi $\hat{Y} = -13,274 + 0,819 X_1$.

b. Persamaan Regresi X_2 dengan Y. Persamaan $\hat{Y} = a + bX_2$, menghasilkan koefisien arah regresi sebesar 0,536 dan konstanta sebesar 8,636. Dengan demikian bentuk hubungan antar variabel X_2 dan Y memiliki persamaan regresi $\hat{Y} = 8,636 + 0,536 X_2$.

Gambar 1.6 Garis regresi $\hat{Y} = 8,636 + 0,536 X_2$.

c. Persamaan Regresi X_1 dan X_2 dengan Y. $\hat{Y} = a_0 + b_1 X_1 + b_2 X_2$, menghasilkan koefisien arah regresi sebesar 0,442 untuk variabel X_1 , 0,3126 untuk variabel X_2 dan konstanta sebesar -4,09328. Dengan demikian bentuk hubungan antar variabel X_1 dan X_2 dengan Y memiliki persamaan regresi $\hat{Y} = -4,0932 + 0,443 X_1 + 0,3126 X_2$. 2. Uji Normalitas Galat Taksiran

a. Uji Normalitas Galat Taksiran X_1 dengan Y.

Kriteria pengujian H_0 diterima jika $L_{hitung} < L_{tabel}$, dan H_0 ditolak jika $L_{hitung} > L_{tabel}$. H_0 menyatakan bahwa populasi berdistribusi normal dan H_i menyatakan bahwa populasi tidak berdistribusi normal. Pada taraf signifikansi 0,05 dan N=65, diperoleh L_{hitung} sebesar 0,10509 dan L_{tabel} sebesar 0,10989. Dari hasil tersebut dapat

b. Uji Normalitas Galat Taksiran X_2 dengan Y.

Kriteria pengujian H₀ diterima jika L_{hitung} < L_{tabel}, dan H₀ ditolak jika L_{hitung}> L_{tabel}. H₀ menyatakan bahwa populasi berdistribusi normal dan H_i menyatakan bahwa populasi tidak berdistribusi normal. Pada taraf signifikansi 0,05 dan N = 65, diperoleh L_{hitung} sebesar 0,10954 dan L_{tabel} sebesar hasil tersebut 0,10989. Dari dapat disimpulkan bahwa Lhitung < Ltabel yaitu 0,10954< 0,10989 sehingga dapat disimpulkan bahwa berdistribusi data normal.

^{*}Penulis Korespondensi

Tabel 1.5 Hasil uji normalitas galat data variabel X_1, X_2, Y

Variabel	L _{hitung}	L _{tabel}	Distribusi
X ₁ dan Y	0,10509	0,10989	Normal
X ₂ dan Y	0, 10954	0,10989	Normal

C. Pengujian Hipotesis

1. Hubungan X₁ dengan Y.

Kriteria pengujian keberartian regresi adalah tolak H_0 jika $F_{hitung} > F_{tabel}$ dan terima H_1 jika $F_{hitung} < F_{tabel}$. H_0 menyatakan bahwa model regresi tidak

berarti, sedangkan H₁ menyatakan bahwa regresi berarti.

Kriteria pengujian kelinearan regresi adalah terima H_0 jika $F_{hitung} < F_{tabel}$ dan tolak H_0 jika $F_{hitung} > F_{tabel}$. H_0 menyatakan bahwa model linear, sedangkan H_1 menyatakan bahwa regresi tidak linear (Arikunto, 2002)

Tabel 1.6 Tabel anava X_1 dan Y untuk pengujian signifikansi dan linieritas persamaan regresi $\hat{Y} = -13.274 + 0.819 X_1$

Sumber	dk	JK	RJK	Fh	F	⁷ t	Kesimpulan
Varian				-	0,05	0,01	=
JK (T)	65	16861,000					
JK (a)	1	16353,25					
JK(b/a)	1	286,7872	286,7872	81,766	3,99		$F_h > F_t \\$
JK(S)	63	220,9667	3,5074				Regresi Signifikan/ Berarti
JK(TC)	9	52,5349	5,8372	1,871	2,06		$F_h < F_t \\$
JK(G)	54	168,4317	3,1191				Regresi Linier

Hasil perhitungan pada tabel di atas dapat diketahui, untuk uji keberartian dengan taraf signifikan $\alpha=0.05$ dan dk = 1,63 diperoleh F_{hitung} sebesar 81,766 dan F_{tabel} sebesar 3,99, dihasilkan F_{hitung} > F_{tabel} (81,766 > 3,99) ini berarti bahwa H_0 ditolak dan H_1 diterima, sehingga menunjukkan regresi yang dihasilkan adalah berarti.

Hasil perhitungan kelinearan dengan taraf signifikansi $\alpha = 0.05$ dan dk = 9.54 diperoleh F_{hitung} sebesar 1,871 dan F_{tabel} sebesar 2,06, dihasilkan $F_{hitung} < F_{tabel}$ (1,871 < 2,06) ini berarti bahwa H_0 diterima dan H_1 ditolak, sehingga menunjukkan regresi yang dihasilkan adalah linear.

Koefisien korelasi diuji dengan menggunakan rumus korelasi *Product*

Uji signifikansi koefisien korelasi diuji dengan rumus Uji-T pada taraf signifikan a = 0.05 dan dk = 63 dengan kriteria H₀ diterima jika thitung < ttabel dan H₀ ditolak jika thitung>ttabel, H₀ menyatakan tidak terjadi signifikan hubungan yang H_1 menyatakan terjadi hubungan yang signifikan. Hasil perhitungan didapat thitung sebesar 9,0413 dan ttabel sebesar 1,669 sehingga dihasilkan $t_{hitung} > t_{tabel}$ (9,0413 > 1,669) ini berarti bahwa H₀ ditolak dan H₁ diterima, sehingga menunjukkan terjadi

^{*}Penulis Korespondensi

hubungan yang signifikan antara X_1 dengan Y.

Koefisien determinan r^2_{x1y} diperoleh nilainya sebesar 0,5648 Ini menunjukkan

bahwa X₁ memberikan kontribusi sebesar 56,48 % padaY.

Tabel 1.7 Uji signifikansi koefisien korelasi X_1 dan Y.

	3	0			
Korelasi antara	Koef Korelasi	Koef Determinasi	$t_{\rm hitung}$	t_{tabel}	Kesimpulan
X ₁ dan Y	0,7515	0,5648	9,0413	1,669	t _{hitung} > t _{tabel} korelasi signifikan

2. Hubungan X₂ dan Y. Kriteria pengujian keberartian, koefisien korelasi, dan uji signifikansi

korelasi sama dengan kriteria pengujian variabel X_1 dengan Y.

Tabel 1.8 Tabel anava X_2 dan Y untuk persamaan regresi $\hat{Y} = 8,636 + 0,536 X_2$

Sı	ımber Varian	dk	JK	RJK	Fh	Ft	Kesimpulan
						0,05	
	JK (T)	65	16861				
	JK (a)	1	16353,25				
	JK(b/a)	1	293,1588	293,1588	86,064	3,99	$F_h > F_t \\$
	JK(S)	63	214,5951	3,4063			Regresi Signifikan/ Berarti
	JK(TC)	11	42,2812	3,8437	1,160	2,37	$F_h < F_t \\$
	JK(G)	52	172,314	3,3137			Regresi Linier

Hasil perhitungan pada tabel di atas dapat diketahui, uji keberartian diperoleh F_{hitung} sebesar 86,064 dan F_{tabel} sebesar 3,99, maka dihasilkan F_{hitung}>F_{tabel} (86,064 > 3,99) yang berarti H₀ ditolak dan H₁ diterima, sehingga menunjukkan bahwa regresi yang dihasilkan adalah berarti.

Hasil perhitungan kelinieran dengan taraf signifikansi $\alpha=0.05$ dan dk = 5.58 diperoleh F_{hitung} sebesar 1,160 dan F_{tabel} sebesar 2,37, maka dihasilkan $F_{hitung} < F_{tabel}$ (1,160 < 2,37) yang berarti H_0 diterima dan H_1 ditolak, sehingga menunjukkan bahwa regresi yang dihasilkan adalah linear.

Hasil perhitungan koefisien korelasi diperoleh nilai r_{X2y} sebesar 0,7598, sehingga

dapat disimpulkan terdapat hubungan positif antara X2 denganY.

Hasil perhitungan uji signifikan koefisien korelasi diperoleh t_{hitung} sebesar 9,2758 dan t_{tabel} sebesar 1,669, maka dihasilkan $t_{hitung} > t_{tabel}$ (9,2758 > 1,669) yang berarti H_0 ditolak dan H_1 diterima, sehingga menunjukkan bahwa terjadi hubungan yang signifikan antara X_2 denganY.

Hasil perhitungan koefisien determinasi diperoleh nilainya sebesar r^2_{X2y} 0,5774. Ini menunjukkan bahwa X_2 memberikan kontribusi sebesar 57,74 % padaY.

Tabel 1.9 Uji signifikansi koefisien korelasi X₂ dan Y.

^{*}Penulis Korespondensi

Korelasi antara	Koef Korelasi	Koef Determinasi	$t_{ m hitung}$	t_{tabel}	Kesimpulan
X ₂ dan Y	0,7598	0,5774	9,2758	1,669	t _{hitung} > t _{tabel} korelasi signifikan

3. Hubungan X_1 dan X_2 secara bersamasama dengan Y.

Hasil perhitungan signifikan regresi ganda dengan persamaan regresi $\hat{Y} = -4,0932 + 0,442 X_1 + 0,3126 X_2$ dengan kriteria pengujian keberartian regresi ganda yaitu

tolak H_0 jika $F_{hitung} < F_{tabel}$ dan terima H_0 jika $F_{hitung} > F_{tabel}$. H_0 menyatakan bahwa model regresi berarti dan H_1 menyatakan bahwa regresi tidak berarti.

Tabel 1.10 Tabel Anava untuk Uji Signifikansi Regresi Ganda.

Sumber	dk	JK	RJK	Fhitung	Ftabel	kesimpulan
variansi					(0,05; 2,38)	
Total	65	507,754				
Regresi	2	326,024	163,0118	56,614	3,15	$F_h > F_t \\$
Sisa	63	181,730	2,9311			Regresi Signifikan

Hasil perhitungan pada tabel di atas dapat diketahui, dengan dk = 63, dk pembilang = 2, taraf signifikansi α = 0,05 diperoleh F_{hitung} sebesar 56,614 dan F_{tabel} 3,15 maka dihasilkan F_{hitung} > F_{tabel} (56,614>3,15) sehingga H_0 diterima yang berarti regresi yang dihasilkan adalah signifikan.

Hasil perhitungan koefisien korelasi ganda diperoleh koefisien korelasi $R_{y\cdot 12}$ sebesar 0,803 dan dapat disimpulkan bahwa terdapat hubungan antara X_1 dan X_2 secara bersama-sama denganY.

Hasil perhitungan signifikan koefisien korelasi ganda diperoleh F_{hitung} sebesar

55,614 dan F_{tabel} sebesar 3,15 maka dihasilkan $F_{hitung} > F_{tabel}$ (55,614 > 3,15) sehingga H_0 diterima yang berarti regresi yang dihasilkan adalah signifikan.

Hasil perhitungan koefisien determinasi hubungan variabel X_1 dan X_2 dengan Y diperoleh nilai koefisien determinasi $R^2_{y,12}$ sebesar 0,6421 atau sebesar 64,21%, sehingga dapat disimpulkan bahwa secara bersamaan X_1 dan X_2 memiliki hubungan dengan Y.

Tabel 1.11 Uji Signifikansi Koefisien Korelasi Ganda

Korelasi Antara	Koef Korelasi	Koef Determinasi	F _{hitung}	F _{tabel}	Kesimpulan
	Ganda				
X ₁ , X ₂ , dan Y	0,8013	0,6421	55,614	3,15	$F_{\text{hitung}} > F_{\text{tabel}}$
					Koefisien korelasi signifikan

Hal ini berarti (Y) dapat dijelaskan atau

dapat ditentukan secara bersama-sama oleh X_1 sebesar 56,48% X_2 sebesar 57,74%. Ini

*Penulis Korespondensi

menunjukkan pula bahwa X_2 merupakan variabel bebas yang memberikan kontribusi paling besar terhadap Y.

Simpulan dan Saran

Melalui hasil penelitian dan pengujian, maka dapat disimpulkan sebagai berikut:

1. Terdapat hubungan positif antara X₁-dan Y peserta didik mengisyaratkan bahwa makin tinggi skor X₁, maka makin tinggi pulaY. Sebaliknya, makin rendah skor X₁ peserta didik, maka makin rendah pulaY.

- 2. Terdapat hubungan positif antara X_2 dan Y peserta didik mengisyaratkan bahwa makin tinggi skor X_2 yang dimiliki peserta didik, maka makin tinggi pulaY. Sebaliknya, makin rendah skor X_2 maka makin rendah pula Y.
- 3. Terdapat hubungan positif antara X_1 dan X_2 secara bersama-sama denganY. Hal ini mengisyaratkan bahwa makin tinggi X_1 dan X_2 maka makin tinggi pulaY. Sebaliknya, makin rendah X_1 dan X_2 maka makin rendah pulaY.
- 4. Hasil pengujian korelasi parsial memberikan informasi bahwa X_2 memberikan kontribusi yang lebih besar daripada X_1 pada kemampuan Y peserta didik $\hat{Y} = -4,0932 + 0,442 X1 + 0,3126 X_2$. Berdasarkan pembahasan hasil penelitian dan kesimpulan serta impikasinya, dapat diajukan saran-saran sebagai berikut:
- 1. Masih terdapat peserta didik yang belum maksimal kemampuan transformasi geometrinya oleh karena itu perlu pembinaan yang intensif dalam proses pembelajaran di sekolah.
- 2. Potensi kecerdasan visual spasial juga

belum mendapat perhatian dari para pendidik di sekolah. Dengan potensi kecerdasan visual spasial yang baik peserta didik dapat mengetahui kelebihan dan kekurangan yang dimilikinya sehingga dapat memanfaatkan secara maksimal untuk meningkatkan kemampuan menggambar konstruksi geometri untuk masa depannya kelak.

3. Hal lain yang dapat meningkatkan kemampuan awal tranformasi geometri dan mengembangkan kecerdasan visual spasialnya melalui bantuan guru di sekolah dengan mengembangkan bahan ajar yang selalu memberikan inovasi baru dalam menyampaikan materi, baik dalam bentuk permainan, penggunaan alat dan media yang menarik atau penggunaan metode yang bervariatif, dengan demikian siswa akan merasa berkurang beban belajarnya.

Daftar Pustaka

Arikunto, S. (2002). *Prosedur Penelitian Suatu Pendekatan Praktik*. Jakarta:
Rineka CiptaTitle.

Arikunto, S. (2009). *Dasar-dasar Evaluasi Pendidikan* (Edisi Revisi). Jakarta:Bumi Aksara

Handayani, I. (2011). Pengaruh Intelligent Quotient (IQ) dan kemampuan tilikan ruang terhadap kemampuan menggambar teknik siswa. *Jurnal Universitas Pendidikan Indonesia*, *Edisi Khus*(2), 154–163.

Harle, M. & T. M. (2014). A Reviewof Spatial Ability Literature, Its Connection to Chemistry, and Implications for Instruction. *Romanian Biotechnological Letters*, 19(5), 9763–9771.

*Penulis Korespondensi

- Iqbal Kamil, A., & Suparji. (2017).
 Analisis Pengaruh Kemampuan
 Spasial dan Kebiasaan Belajar
 Terhadap Kemampuan Menggambar
 Konstruksi Beton Bertulang Siswa
 Kelas XI TGB SMKN 1 Kediri.
 Jurnal Kajian Pendidikan Teknik
 Bangunan, I(1/JKPTB/17), 61–71.
- Mulfi, M. H., & Rizal, F. (2018).

 Hubungan Kecerdasan Visual-Spasial
 Dengan Hasil Belajar Gambar Interior
 Eksterior Bangunan Gedung Siswa
 Kelas XII Jurusan TGB di SMK
 Negeri 1 Bukittinggi. *CIVED*, 6(1).
- Mursid, R. (2016). Pengaruh Model Pembelajaran Berbasis Konstruktivistik dan Kemampuan Spatial Visualization Terhadap Kompetensi Menggambar Proyeksi Orthogonal. *JTP - Jurnal Teknologi Pendidikan*, 18(3), 215–229. https://doi.org/10.21009/jtp1803.6
- Mustofa, Pikoli, M., & Suleman, N. (2013). Hubungan Antara Kemampuan Berpikir Formal dan Kecerdasan Visual-Spasial dengan Kemampuan Menggambarkan Bentuk Molekul Siswa Kelas XI MAN Model Gorontalo Tahun Ajaran 2010 / 2011. Jurnal Entropi, VIII, 551–561.
- Purwati, S. (2016). Pengaruh Kemampuan Awal terhadap Pemahaman Konsep Usaha dan Energi. *Prosiding SNFA* (*Seminar Nasional Fisika Dan Aplikasinya*), Vol. 1, p. 100. https://doi.org/10.20961/prosidingsnfa .v1i0.4522
- Rahmat, M. H., Syaad, P., & Soenar, S. (2016). Pengaruh Model Pembelajaran dan Kemampuan Awal Terhadap

- Hasil Belajar Teknik Permesinan Frais Siswa SMK. *Jurnal Pendidikan: Teori*, *Penelitian Dan Pengembangan*, *I*(5), 785–795. Retrieved from https://journal.um.ac.id/index.php/jptp p/article/view/6257
- Razak, F. (2018). Hubungan Kemampuan Awal Terhadap Kemampuan Berpikir Kritis Matematika Pada Siswa Kelas Vii Smp Pesantren Immim Putri Minasatene. *Mosharafa: Jurnal Pendidikan Matematika*, 6(1), 117–128. https://doi.org/10.31980/mosharafa.v6 i1.299
- Siregar, S. (2013). *Metode Penelitian Kuantitatif. Pertama*, 528.
- Sugiyono. (2015). Metode Penelitian Pendidikan: Pendekatan Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta.

^{*}Penulis Korespondensi