PERBANDINGAN KELUARAN PANEL SURYA DENGAN DAN TANPA SISTEM PENJEJAK

Reni Listiana¹⁾, Tri Hardiyanti Yasmin²⁾

1,2)Prodi Teknik Otomasi Politeknik TEDC Bandung

1)E-mail: renilistiana@poltektedc.ac.id

Abstrak

Pembangkit listrik tenaga surya adalah pembangkit listrik yang mengubah energi matahari (cahaya) menjadi energi listrik. Pembangkitan listrik dapat dilakukan dengan menggunakan fotovoltaik atau bisa juga disebut solar cell, yang terjadi saat ini, sel surya tidak dapat menyerap sinar matahari secara optimal, karena solar cell hanya diam dalam satu arah (statis) maka diperlukan sistem cerdas untuk pembangkit tenaga surya untuk pembangkit listrik tenaga surya bekerja lebih optimal, untuk membuat sistem pintar diperlukan untuk membaca data dari beberapa sensor. Untuk menemukan arah kedatangan sinar sinar matahari, digunakan empat sensor resistor bergantung cahaya (LDR). Pengolahan data intensitas cahaya, penentuan arah rotasi motor dan data sensor lainnya akan dilakukan oleh mikrokontroler. Kemudian data yang berada di pembangkit listrik tenaga surya akan ditampilkan pada layar dan diukur berapa jauh berbeda dalam tegangan, arus dan daya yang dihasilkan oleh panel surya. Kemudian output dari pembangkit listrik tenaga surya dibandingkan di antara sistem dengan pelacakan dan tanpa pelacakan.

Kata kunci: PLTS, sensor cahaya, voltase, arus dan daya

Abstract

Solar power plants are power plants that convert solar energy (light) into electrical energy. Generation of electricity can be done by using photovoltaic or can also called solar cell, which happened at this time, solar cell can not absorb sunlight optimally, because solar cell only silent in one direction (static) therefore needed smart system for generator Solar power for solar power plants to work more optimally, to make the smart system is needed to read data from several sensors. To find the direction of the arrival of the sunlight rays, used four light dependent resistor sensor (LDR). Light intensity data processing, motor rotation direction determination and other sensor data will be done by microcontroller. Then the data residing on the solar power plant will be displayed on the display and measured how much different in voltage, current and power generated by solar panel. Then the output of the solar power plant be compared among the system with tracking and without tracking.

Keywords: PLTS, Light Sensor, voltage, current and power

1. PENDAHULUAN

1.1. Latar Belakang

Karena kita tahu bahwa sumber minyak dunia akan habis dan kita tidak mempunyai cara untuk mengisi ulang lagi sumber minyak tersebut. Dengan demikian perlu menemukan alternatif lain guna mendukung atau mempertahankan kebutuhan dan gaya hidup yang menggunakan energi yang dapat diperbaharui.

Dengan kondisi yang demikian, gerakan hemat energi sudah merupakan keharusan di seluruh dunia. Salah satunya dengan menghemat bahan bakar dan menggunakan bahan bakar non-fosil yang dapat diperbaharui seperti tenaga angin, tenaga air, energi panas bumi, tenaga matahari, dan lainnya. Sistem Pembangkit Listrik Tenaga

Surya (PLTS) akan lebih diminati karena dapat digunakan untuk keperluan apa saja dan di mana saja, contoh : bangunan besar, pabrik, perumahan, lampu penerangan jalan, dan lainnya. Selain persediaannya tanpa batas, tenaga surya nyaris tanpa dampak buruk terhadap lingkungan dibandingkan bahan bakar lainnya. Pembangkit Surya Fotovoltaik (Solar Photovoltaic Plants) — memanfaatkan sel surya (solar cell) untuk mengkonversi radiasi cahaya menjadi energi listrik secara langsung.

Permasalahan yang ada saat ini adalah panel surya yang terpasang kebanyakan masih bersifat statis. Hal ini menyebabkan penerimaan energi matahari tidak optimal. Untuk mengoptimalkan penerimaan energi matahari tersebut dibuatlah

*Penulis Korespondensi

Diterima: Januari 2018. Disetujui: Februari 2018. Dipublikasikan: Maret 2018

sistem di mana panel surya dapat selalu mengikuti pergerakan matahari.

Dengan posisi panel menghadap ke atas dan jika panel dianggap benda yang mempunyai permukaan rata maka panel akan mendapat radiasi matahari maksimum pada saat matahari tegak lurus dengan 2 bidang panel. Pada saat arah matahari tidak tegak lurus dengan bidang panel surya maka panel surya akan menerima radiasi lebih kecil. Dengan menurunnya radiasi yang diterima oleh panel maka jelas akan mengurangi energi listrik yang dikeluarkan oleh panel. Bahkan berkurangnya energi ini bisa menjadi setengahnya. Untuk itu perlu adanya pengaturan arah panel sel surya agar selalu tegak lurus dengan arah sinar matahari. Pengaturan arah panel surya kurang efektif jika dilakukan secara manual oleh manusia. Dengan demikian perlu dibuat sebuah sistem kontrol yang dapat mengatur arah panel surva tersebut. Suatu sistem kontrol memerlukan mekanisme pengolah algoritma. Pengolahan algoritma sistem kontrol bisa diselesaikan dengan komputer. mikrokontroler, dan alat lain.

Untuk mengatur arah panel surya agar selalu tegak lurus dengan sinar matahari digunakan sistem kontrol mengguanakan Mikrokontroler (arduino) untuk mendapatkan keluaran energi panel surva yang optimal.

Selanjutnya untuk mengetahui seberapa besar pengaruh adanya tracking (system penjejak) perlu dilakukan analisis dan pengukuran secara kontinyu sepanjang hari dan dalam kondisi cuaca yang berdeda.

Dalam jurnal ini diteliti perbedaan output panel surya jika menggunakan sistem penjejak dibandingkan dengan jika tidak menggunakan sistem penjejak.

1.2.Pembatasan Masalah

Agar dapat fokus pada inti permasalahan, maka penulis akan memberikan batasan masalah yang akan diuraikan, diantaranya:

- 1. Panel surya yang digunakan hanya satu, jadi pengukuran dilaksanaan tidak bersamaan. Dengan maksud satu hari untuk statis dan hari berikutnya untuk menggunakan sistem penjejak
- 2. Asumsi hanya ada satu sumber cahaya (matahari) saat panel surya bekerja.
- Pelaksanaan pengambilan data di gedung Politeknik TEDC lantai 5 (atap dari lantai 4)
- 4. Pelaksanaan penelitian tidak saat mendung dan juga tidak saat hujan.

1.3.Tujuan

Adapun tujuan dari penelitian ini adalah:

A.Mengetahui perbedaan tegangan dihasilkan panel surya ketika dipasang secara stasis dan dengan menggunakan sistem penjejak terhadap sinar matahari.

B.Mengetahui waktu yang dibutuhkan untuk mengisi aki ketika dipasang secara stasis dan dengan menggunakan sistem penjejak terhadap sinar matahari

C.Mengetahui perbedaan daya yang dihasilkan panel surya ketika dipasang secara stasis dan dengan menggunakan sistem penjejak terhadap sinar matahari.

1.4.Hipotesa

Dengan menggunakan system penjejak, maka panel surya akan bergerak mengarah ke arah intensitas cahaya terbesar, sehingga akan bisa menghasilkan output yang lebih besar dibandingkan jika panel surya tersebut statis.

2.Metodologi Penelitian

2.1 Waktu dan Tempat Penelitian

Penelitian dilakukan di gedung Politeknik TEDC Bandung lantai paling atas yaitu lantai 5 (atap dari lantai 4) pada bulan Agustus 2017.

2.2 Alat dan Bahan

Peralatan dan komponen elektronika yang digunakan dalam penelitian ini adalah:

- a. Komputer pribadi
- b. Solar Tracking System
- c. Modul Sel Surva
- d. Voltmeter
- e. Amperemeter
- f. Resistor
- g. Project Board

2.3Cara Kerja Alat

Kondisi awal sistem ini adalah tracking tetapi dapat diatur menjadi statis sebagai pembanding. A.Pada kondisi awal sensor mendeteksi sinar matahari diteruskan ke kontrol dari sinilah didapat perbandingan intesitas cahaya yang diterima sensor. Dari nilai intensitas cahaya sensor itu digunakan untuk menentukan gerak arah putaran motor yang di pasang pada panel

surya sehingga mampu tracking terhadap sinar matahari.

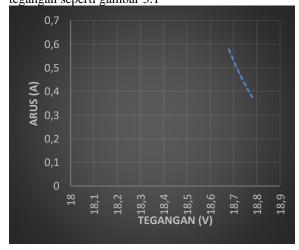
B.Panel surya menghasilkan tegangan DC, tegangan yang dihasilkan panel surya itu di teruskan ke Accu dengan bantuan solar charger, data tegangan yang dihasilkan solar cell disimpan pada logger. Selain disimpan pada logger tegangan juga akan ditampilkan pada display yaitu LCD.

C.Tegangan dari baterai selain sebagai sumber tegangan DC juga digunakan sebagai sumber tegangan inverter dimana tegengan DC itu di konversi menjadi tegangan AC.

D.Selama pengisian baterai, output tidak dapat digunakan. Jadi sistem yang digunakan adalah ketika baterai sudah terisi dengan penuh barulah outputnya dapat digunakan baik itu DC maupun AC.

Ada beberapa kondisi pengaturan yaitu: a.Sistem penjejak *solar (solar tracking system)* sistem ini, bisa digunakan atau bisa diberi beban ketika baterai sudah terisi penuh

b.Baterai terisi jika panel surya mendapat tegangan minimal 14v.


c.Ketika sinar matahari tersedia dan pembacaan tegangan baterai pada kondisi penuh maka energi yang dihasilkan panel surya tidak akan masuk baterai.

d.Ketika sinar matahari tersedia dan pembacaan tegangan baterai belum penuh maka energi listrik yang dihasilkan panel surya akan melakukan isi ulang pada baterai.

e.Ketika sinar matahari tidak tersedia dan pembacaan tegangan baterai penuh maka beban akan memperoleh listrik yang bersumber dari baterai.

3.Hasil Penelitian Hasil Pengujian Karakteristik Arus-Tegangan (I-V) Pada Panel Surya

Hasil Pengujian Karakteristik panel surya dapat ditampilkan dalam hubungan arus terhadap tegangan seperti gambar 3.1

Gambar 3.1 Grafik arus - tegangan hasil pengujian karakteristik panel surya

Dari gambar 3.1 dapat dilihat karakteristik sel surya, yaitu semakin besar nilai tegangan maka arus yang mengalir semakin kecil. Karakteristik tersebut berbeda dengan sumber tegangan (voltage source) maupun sumber arus (current source). Sumber tegangan yang ideal akan memberikan tegangan yang konstan ketika diberikan beban yang bervariasi dan sumber arus yang ideal akan memberikan arus yang konstan ketika diberikan beban yang bervariasi. Dengan demikian sel surya tidak bisa disebut sebagai sumber tegangan maupun sumber arus.

3.1 Pengukuran Tegangan dan Arus Panel Surya

Pengukuran tegangan dan arus panel surya menggunakan sistem penjejak dan tanpa sistem penjejak bisa dilihat pada tabel berikut

Tabel 3.1 Hari pertama dan kedua:

Tuoci 5:1 Hari pertama dan kedaa :									
	Menggu	ınakan	Tanpa sistem penjejak						
Pukul	Sistem p	enjejak							
Tukui	Tegangan	Arus	Tegangan	Arus					
	(Volt)	(A)	(Volt)	(A)					
09.00	17,55	0,52	16,62	0,58					
10.00	17,85	0,49	17,5	0,56					
11.00	18,18	0,4	18,03	0,47					
12.00	18,88	0,43	18,78	0,42					
13.00	18,57	0,48	18,21	0,46					
14.00	17,65	0,51	16,9	0,53					
15.00	17,34	0,5	15,87	0,55					

Tabel 3.2 Hari ketiga dan keempat:

			<u> </u>			
	Menggun	akan	Tanpa sistem			
Pukul	Sistem per	ijejak	penj	ejak		
Tukui	Tegangan	Arus	Tegangan	Arus		
	(Volt)	(A)	(Volt)	(A)		
09.00	17,48 0,51		16,54	0,55		
10.00	17,75	0,5	17,36	0,53		
11.00	18,35	0,42	18,24	0,42		
12.00	18,91	0,4	18,79	0,4		
13.00	18,62	0,49	18,18	0,43		
14.00	17,43	0,53	17,03	0,51		

*penulis korespondensi

Diterima: Januari 2018. Disetujui: Februari 2018. Dipublikasikan: Maret 2018

Dilihat dari tabel 3.1 dan tabel 3.2 terjadi perbedaan output tegangan ataupun arus antara panel surya menggunakan sistem penjejak dan panel surya tanpa system penjejak. Tegangan yang dihasilkan panel surya menggunakan system penjejak akan memiliki nilai yang lebih besar dibandingkan dengan panel surya tanpa system penjejak.

Nilai rata-rata keluaran panel surya selama empat hari berdasarkan pembagian waktu pagi, siang dan sore hari dapat dilihat pada tabel 3.3 - table 3.5. Pagi hari dari pukul 09.00 -10.00, siang hari dari pukul 11.00 - 13.00 dan sore hari dari pukul 14.00-15.00.

Tabel 3.3 persentasi perbedaan tegangan pagi hari :											
Pukul			Menggunakan System penjejak		Tanpa sistem		Persentasi perbedaan tegangan		Keteranga n		
			Tabel 3	3.6 Perhitu	ngan Daya H	arri K	Lesatu dan Hari Kedua				
	Pukul		Menggunakan Sistem penjejak				Tanpa sistem penjejak			ejak	
			Tegangan	Arus	Daya		Tegan	Tegangan Ar		Daya	
			(Volt)	(A)	(wat	t)	(Vo	lt)	(A)	(watt)	
	09.00 10.00		17,55	17,55 0,42		7,37 16,6		52	0,39 6,48		
			17,85	0,45	8,03		17,5		0,47	8,23	
			18,18	0,48	8,73	3	18,0)3	0,5	9,02	
	12.0	0	18,88	0,52	9,82	2	18,7	78	0,51	9,58	
	13.0	0	18,57	0,51	9,47	7	18,21		0,52	9,47	
	14.0	0	17,65	0,44	7,77	7	16,	9	0,4	6,76	
	15.0	0	17,34	0,4	6,94	ı	15,8	37	0,3	4,76	
	Σ Day				58,12					54,29	
T		Гegangan	Arus	Tegangan		Arus		%			
			(Volt)	(A)	(Volt)		(A)				
09.00			17,52	0,52	16,58		0,57	5	5,34	lebih be menggun n sister penjeja	aka n
10.00			17.80	0.50	17.43		0.55		2.08	lebih be menggun n sister penieia	sar aka n

Tabel 3.4 pesentasi perbedaan tegangan siang hari :										
	Menggunakan sistem penjejak		Tanpa sistem penjejak		Persentasi perbedaan	Keterangan				
Pukul					tegangan					
	Tegangan	Arus	Tegangan	Arus	%					
	(Volt)	(A)	(Volt)	(A)						
						lebih besar menggunakan sistem				
11.00	18,27	0,41	18,14	0,45	0,45 0,71	penjejak				
12.00	18,90	0,42	18,79	0,41	0,58	lebih besar menggunakan sistemt penjejak				
					,	lebih besar menggunakan sistem				
13.00	18,60	0,49	18,20	0,45	2,15	penjejak				

Tabel 3.5 pesentasi perbedaan tegangan sore hari :									
	Menggunakan		Tanpa solar		Persentasi perbedaan				
Pukul	solar trac	ker	Track	er	Tegangan	keterangan			
	Tegangan	Arus	Tegangan	Arus	%				
	(Volt)	(mA)	(Volt)	(mA)					
						lebih besar menggunakan			
14.00	17,54	0,52 16,97 0,		0,52	3,28	system penjejak			
						lebih besar menggunakan			
15.00	.00 17,31 0,52		16,16	0,55	6,64	sistem penjejak			

Dari data Tabel 3.3, 3.4, dan tabel 3.5 dapat dihitung besarnya persentasi tegangan antara panel surya menggunakan sistem penjejak dengan panel surya tanpa sistem penjejak

a. Persentasi tegangan rata-rata pagi hari (pukul 09.00-10.00)

$$\frac{5,54 \% + 2,08\%}{2} = 3,81\%$$

b. Persentasi tegangan rata-rata siang hari (pukul 11.00-13.00)

$$\frac{0.71\% + 0.58\% + 2.15}{3} = 1.2\%$$

c. Persentasi tegangan rata-rata sore hari (pukul 14.00-15.00)

$$\frac{3,28\% + 6,64\%}{2} = 4,96\%$$

Panel surya dengan menggunakan sistem penjejak menghasilkan tegangan rata-rata sekitar 3,81 % pada pagi hari, 1,2% pada siang hari dan 4,96% pada sore hari lebih besar dari pada panel surya tanpa sistem penjejak.

3.2 Pengukuran Daya Pada Panel Surya

ı		Me	nggunakan		Tanpa sistem penjejak			
	Pukul	Sist	em penjejal	k				
	rukui	Tegangan	Arus	Daya	Tegangan	Arus	Daya	
l		(Volt)	(A)	(watt)	(Volt)	(A)	(watt)	
	09.00	17,48	0,41	7,17	16,54	0,37	6,12	
	10.00	17,75	0,44	7,81	17,36	0,42	7,29	
Ī	11.00	18,35	0,5	9,18	18,24	0,5	9,12	
Ī	12.00	18,91	0,52	9,83	18,79	0,52	9,77	
Ī	13.00	18,62	0,5	9,31	18,18	0,51	9,27	
Ī	14.00	17,43	0,43	7,49	17,03	0,42	7,15	
Ī	15.00	17,28	0,42	7,26	16,45	0,36	5,92	
	∑Daya	, .		58,05			54,65	

4

Dari data Tabel 3.6 dan tabel 3.7 dapat dihitung besarnya persentasi perbedaan daya yang dihasilkan antara panel surya menggunakan sistem penjejak dengan panel surya tanpa sistem penjejak a. Rata - rata daya menggunakan sistem penjejak:

$$\frac{58,12 + 58,05}{2} = 58,08w$$
b. Rata - rata daya tanpa menggunakan

b. Rata - rata daya tanpa menggunakan sistem penjejak :

$$\frac{54,29 + 54,65}{2} = 54,47w$$

c. Persentasi perbedaan daya keluaran menggunakan sistem penjejak dan tanpa menggunakan sistem penjejak:

$$\frac{58,08 - 54,47}{58.08} \times 100\% = 6,2\%$$

3.3 Lama pengisian baterai

Lama pengisian baterai dengan sumber panel surya menggunakan sistem penjejak dan tidak menggunakan sistem penjejak hampir sama durasi pengisiannya. Karena metode yang digunakan adalah metode PWM dengan arus yang kecil dan konstan yaitu sekitar 0,8 A dengan kapasitas baterai 4000mAh

Jadi bila pengisian baterai dimulai jam 9 dengan keadaan baterai kosong, atau dengan tegangan baterai 11,7V maka baterai akan penuh terisi dengan tegangan 13,8 sekitar 5 jam kemudian yaitu jam 14.00.

4.Kesimpulan dan Saran 4.1.Kesimpulan

Di sini penulis dapat mengambil kesimpulan sebagai berikut :

1. Karakteristik panel surya dilakukan dengan mengukur tegangan dan arus panel surya untuk beragam nilai beban. Karakteristik panel surya, yaitu semakin besar nilai tegangan maka arus yang mengalir semakin kecil, begitu juga sebaliknya ketika nilai tegangannya kecil maka arus yang mengalirnya besar, karena untuk mengimbangi daya yang keluar dari panel Surya yang berkapasitas 10W

2.Dari hasil pengukuran diperoleh bahwa, panel surya dengan menggunakan sistem penjejak menghasilkan tegangan rata-rata sekitar 3,81 % pada pagi hari, 1,2% pada siang hari dan 4,96% pada sore hari lebih besar dari pada panel surya tanpa sistem penjejak

3.Dari hasil pengujian selama empat hari diperoleh data bahwa panel surya menggunakan sistem penjejak menghasilkan persentasi daya lebih besar 18,69% dibandingkan dengan yang tidak menggunakan sistem penjejak.

4.Lama pengisian baterai dengan sumber panel surya menggunakan sistem penjejak dan tidak menggunakan sistem penjejak hampir sama durasi pengisiannya yaitu kurang lebih 5 jam dengan catatan kondisi cuaca pada saat perbandingan hampir sama (pada saat cerah)

4.2 Saran

Sebaiknya penelitian juga dilakukan ketika keadaan cuaca sedang mendung agar mengetahui keluaran dari sistem penjejak jika intensitas cahaya matahari sedikit atau terhalang awan.

DAFTAR PUSTAKA

Wikipedia. 2016. Energi listrik. Https://id.wikipedia.org/wiki/Energi_listrik. diakses pada 28 Juli 2017.

Alam Endah. 2014. Energi terbarukan http://alamendah.org/2014/09/09/8-sumber-energi-terbarukan-diindonesia/2/. diakses pada 1 Agustus 2017

Indoenergi. 2012. Pengertian energi surya

*Http://www.indoenergi.com/2012/04/

pengertian-energi-surya.html. Diakses

pada 2 Agustus 2017

Ihsan. 2013. Peningkatan Suhu Modul dan Daya Keluaran Panel Surya dengan Menggunakan Reflektor. Jurnal Teknosains Vol. 7.

Siahaan, Mujahidin, Nusyirwan, 2012
"Implementasi Panel Surya Yang
Diterapkan Pada Daerah Terpencil Di
Rumah Tinggal Di Desa Sibuntuon,
Kecamatan Habinsaran": Universitas
Maritim Raja Ali Haji

Wilman septina. 2011.teknologi surya https://teknologisurya.wordpress.com/d asar-teknologi-sel-surya/prinsipkerjasel-surya

Energi terbarukan online , 2013 (Http://energiterbarukanonline.blogspot. co.id /2013/04/komponen-sistem-listriktenaga-surya.html).

5